skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Vikaeus, Anton"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract The gravitationally lensed star WHL 0137–LS, nicknamed Earendel, was identified with a photometric redshift z phot = 6.2 ± 0.1 based on images taken with the Hubble Space Telescope. Here we present James Webb Space Telescope (JWST) Near Infrared Camera images of Earendel in eight filters spanning 0.8–5.0 μ m. In these higher-resolution images, Earendel remains a single unresolved point source on the lensing critical curve, increasing the lower limit on the lensing magnification to μ > 4000 and restricting the source plane radius further to r < 0.02 pc, or ∼4000 au. These new observations strengthen the conclusion that Earendel is best explained by an individual star or multiple star system and support the previous photometric redshift estimate. Fitting grids of stellar spectra to our photometry yields a stellar temperature of T eff ≃ 13,000–16,000 K, assuming the light is dominated by a single star. The delensed bolometric luminosity in this case ranges from log ( L ) = 5.8 to 6.6 L ⊙ , which is in the range where one expects luminous blue variable stars. Follow-up observations, including JWST NIRSpec scheduled for late 2022, are needed to further unravel the nature of this object, which presents a unique opportunity to study massive stars in the first billion years of the universe. 
    more » « less
  2. ABSTRACT Dark matter haloes that reach the H i-cooling mass without prior star formation or external metal pollution represent potential sites for the formation of small – extremely faint – Population III galaxies at high redshifts. Gravitational lensing may in rare cases boost their fluxes to detectable levels, but to find even a small number of such objects in randomly selected regions of the sky requires very large areas to be surveyed. Because of this, a small, wide-field telescope can in principle offer better detection prospects than a large telescope with a smaller field of view. Here, we derive the minimum comoving number density required to allow gravitational lensing to lift such objects at redshift z = 5−16 above the detection thresholds of blind surveys carried out with the James Webb space telescope (JWST), the Roman space telescope (RST) and Euclid. We find that the prospects for photometric detections of Pop III galaxies are promising, and that they are better for RST than for JWST and Euclid. However, the Pop III galaxies favoured by current simulations have number densities too low to allow spectroscopic detections based on the strength of the He ii1640 emission line in any of the considered surveys unless very high star formation efficiencies (ϵ ≳ 0.1) are evoked. We argue that targeting individual cluster lenses instead of the wide-field surveys considered in this paper results in better spectroscopic detection prospects, while for photometric detection, the wide-field surveys perform considerably better. 
    more » « less